2016-12-13 16 views
2

私は自分のプログラムで並列Pythonを使用しています。 私はCLIを使ってPythonプログラムを実行するとうまく動作します。parallel python:通信パイプの読み込みエラー

import math, sys, time 
import pp 
import os 

def isprime(n): 
    """Returns True if n is prime and False otherwise""" 
    if not isinstance(n, int): 
     raise TypeError("argument passed to is_prime is not of 'int' type") 
    if n < 2: 
     return False 
    if n == 2: 
     return True 
    max = int(math.ceil(math.sqrt(n))) 
    i = 2 
    while i <= max: 
     if n % i == 0: 
      return False 
     i += 1 
    return True 

def sum_primes(n): 
    """Calculates sum of all primes below given integer n""" 
    return sum([x for x in xrange(2,n) if isprime(x)]) 

print """Usage: python sum_primes.py [ncpus] 
    [ncpus] - the number of workers to run in parallel, 
    if omitted it will be set to the number of processors in the system 
""" 

print sys.argv 
print sys.stdin 
print sys.stdout 
print sys.stderr 

print 'read method' 

#print 'str:', sys.stdin.read() 
#print 'str:', sys.stdout.read() 


print 'pptest print done' 

# tuple of all parallel python servers to connect with 
ppservers =() 
#ppservers = ("10.0.0.1",) 

if len(sys.argv) > 1: 
    ncpus = int(sys.argv[1]) 
    # Creates jobserver with ncpus workers 
    job_server = pp.Server(ncpus, ppservers=ppservers) 
else: 
    # Creates jobserver with automatically detected number of workers 
    job_server = pp.Server(ppservers=ppservers) 

print "Starting pp with", job_server.get_ncpus(), "workers" 



# Submit a job of calulating sum_primes(100) for execution. 
# sum_primes - the function 
# (100,) - tuple with arguments for sum_primes 
# (isprime,) - tuple with functions on which function sum_primes depends 
# ("math",) - tuple with module names which must be imported before sum_primes execution 
# Execution starts as soon as one of the workers will become available 
job1 = job_server.submit(sum_primes, (100,), (isprime,), ("math",)) 

# Retrieves the result calculated by job1 
# The value of job1() is the same as sum_primes(100) 
# If the job has not been finished yet, execution will wait here until result is available 
result = job1() 

print "Sum of primes below 100 is", result 

start_time = time.time() 

# The following submits 8 jobs and then retrieves the results 
inputs = (100000, 100100, 100200, 100300, 100400, 100500, 100600, 100700) 
jobs = [(input, job_server.submit(sum_primes,(input,), (isprime,), ("math",))) for input in inputs] 
for input, job in jobs: 
    print "Sum of primes below", input, "is", job() 

print "Time elapsed: ", time.time() - start_time, "s" 
job_server.print_stats() 


# Parallel Python Software: http://www.parallelpython.com 

はの欠如に関連しているように見える: しかし、私は私のデバッガを通してそれを実行すると、それは次の頁の例を実行するときに

File "D:/Unief/Thesis/deepmedic-master\deepmedic\trainValidateTestVisualiseParallel.py", line 1063, in do_training 
    job_server = pp.Server(ncpus=1, ppservers=ppservers) # Creates jobserver with automatically detected number of workers 
    File "D:\Anaconda2\lib\site-packages\pp-1.6.4-py2.7.egg\pp.py", line 339, in __init__ 
    self.set_ncpus(ncpus) 
    File "D:\Anaconda2\lib\site-packages\pp-1.6.4-py2.7.egg\pp.py", line 503, in set_ncpus 
    range(ncpus - len(self.__workers))]) 
    File "D:\Anaconda2\lib\site-packages\pp-1.6.4-py2.7.egg\pp.py", line 138, in __init__ 
    self.start() 
    File "D:\Anaconda2\lib\site-packages\pp-1.6.4-py2.7.egg\pp.py", line 149, in start 
    self.pid = int(self.t.receive()) 
    File "D:\Anaconda2\lib\site-packages\pp-1.6.4-py2.7.egg\pptransport.py", line 140, in receive 
    raise RuntimeError("Communication pipe read error") 
RuntimeError: Communication pipe read error 

同じエラーが発生する次のエラーがスローされますが、デバッガの谷CLI。

解決方法はありますか?

+0

最小例:。 輸入頁。 ppservers =(); job_server = pp.Server(ppservers = ppservers); print "Starting pp with"、job_server.get_ncpus()、 "workers"; – Dave

答えて

0

同じ問題が発生しましたが、根本原因を解決できませんでした。回避策として、デバッグ時に、 'import pp'の後に次のコードを追加します。

class FakeServer(object): 
    def __init__(self,ncpus,ppservers): 
     pass 
    def submit(self,fn,params,localfunctions=None, externalmodules=None): 
     result = apply(fn,params) 
     return lambda: result 
pp.Server = FakeServer 

は今、あなたのコードは、PPの使用状況を変更することなく、デバッグが容易にシングルスレッドとある

関連する問題