スパークのランダムフォレストでクロス検証を実行しようとしています。スパークランダムフォレスト相互検証エラー
from pyspark.ml import Pipeline
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
data = nds.sc.parallelize([
LabeledPoint(0.0, [0,402,6,0]),
LabeledPoint(0.0, [3,500,3,0]),
LabeledPoint(1.0, [1,590,1,1]),
LabeledPoint(1.0, [3,328,5,0]),
LabeledPoint(1.0, [4,351,4,0]),
LabeledPoint(0.0, [2,372,2,0]),
LabeledPoint(0.0, [4,302,5,0]),
LabeledPoint(1.0, [1,387,2,0]),
LabeledPoint(1.0, [1,419,3,0]),
LabeledPoint(0.0, [1,370,5,0]),
LabeledPoint(0.0, [1,410,4,0]),
LabeledPoint(0.0, [2,509,7,1]),
LabeledPoint(0.0, [1,307,5,0]),
LabeledPoint(0.0, [0,424,4,1]),
LabeledPoint(0.0, [1,509,2,1]),
LabeledPoint(1.0, [3,361,4,0]),
])
train=data.toDF(['label','features'])
numfolds =2
rf = RandomForestClassifier(labelCol="label", featuresCol="features")
evaluator = MulticlassClassificationEvaluator()
paramGrid = ParamGridBuilder().addGrid(rf.maxDepth,
[4,8,10]).addGrid(rf.impurity, ['entropy','gini']).addGrid(rf.featureSubsetStrategy, [6,8,10]).build()
pipeline = Pipeline(stages=[rf])
crossval = CrossValidator(
estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=evaluator,
numFolds= numfolds)
model = crossval.fit(train)
私はparamGridがリストとして私の入力を読んでされていないことが表示されます、次のエラー
Py4JJavaError Traceback (most recent call last)
<ipython-input-87-7ea70f89086a> in <module>()
66 numFolds=num)
67
---> 68 model = crossval.fit(train)
/opt/spark/current/python/pyspark/ml/pipeline.py in fit(self, dataset, params)
67 return self.copy(params)._fit(dataset)
68 else:
---> 69 return self._fit(dataset)
70 else:
71 raise ValueError("Params must be either a param map or a list/tuple of param maps, "
/opt/spark/current/python/pyspark/ml/tuning.py in _fit(self, dataset)
237 train = df.filter(~condition)
238 for j in range(numModels):
--> 239 model = est.fit(train, epm[j])
240 # TODO: duplicate evaluator to take extra params from input
241 metric = eva.evaluate(model.transform(validation, epm[j]))
/opt/spark/current/python/pyspark/ml/pipeline.py in fit(self, dataset, params)
65 elif isinstance(params, dict):
66 if params:
---> 67 return self.copy(params)._fit(dataset)
68 else:
69 return self._fit(dataset)
/opt/spark/current/python/pyspark/ml/pipeline.py in _fit(self, dataset)
211 dataset = stage.transform(dataset)
212 else: # must be an Estimator
--> 213 model = stage.fit(dataset)
214 transformers.append(model)
215 if i < indexOfLastEstimator:
/opt/spark/current/python/pyspark/ml/pipeline.py in fit(self, dataset, params)
67 return self.copy(params)._fit(dataset)
68 else:
---> 69 return self._fit(dataset)
70 else:
71 raise ValueError("Params must be either a param map or a list/tuple of param maps, "
/opt/spark/current/python/pyspark/ml/wrapper.py in _fit(self, dataset)
130
131 def _fit(self, dataset):
--> 132 java_model = self._fit_java(dataset)
133 return self._create_model(java_model)
134
/opt/spark/current/python/pyspark/ml/wrapper.py in _fit_java(self, dataset)
126 :return: fitted Java model
127 """
--> 128 self._transfer_params_to_java()
129 return self._java_obj.fit(dataset._jdf)
130
/opt/spark/current/python/pyspark/ml/wrapper.py in _transfer_params_to_java(self)
80 for param in self.params:
81 if param in paramMap:
---> 82 pair = self._make_java_param_pair(param, paramMap[param])
83 self._java_obj.set(pair)
84
/opt/spark/current/python/pyspark/ml/wrapper.py in _make_java_param_pair(self, param, value)
71 java_param = self._java_obj.getParam(param.name)
72 java_value = _py2java(sc, value)
---> 73 return java_param.w(java_value)
74
75 def _transfer_params_to_java(self):
/opt/spark/current/python/lib/py4j-0.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
811 answer = self.gateway_client.send_command(command)
812 return_value = get_return_value(
--> 813 answer, self.gateway_client, self.target_id, self.name)
814
815 for temp_arg in temp_args:
/opt/spark/current/python/pyspark/sql/utils.py in deco(*a, **kw)
43 def deco(*a, **kw):
44 try:
---> 45 return f(*a, **kw)
46 except py4j.protocol.Py4JJavaError as e:
47 s = e.java_exception.toString()
/opt/spark/current/python/lib/py4j-0.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
306 raise Py4JJavaError(
307 "An error occurred while calling {0}{1}{2}.\n".
--> 308 format(target_id, ".", name), value)
309 else:
310 raise Py4JError(
Py4JJavaError: An error occurred while calling o1434.w.
: java.lang.ClassCastException: java.lang.Integer cannot be cast to java.lang.String
at org.apache.spark.ml.tree.RandomForestParams$$anonfun$5.apply(treeParams.scala:340)
at org.apache.spark.ml.param.Param.validate(params.scala:71)
at org.apache.spark.ml.param.ParamPair.<init>(params.scala:509)
at org.apache.spark.ml.param.Param.$minus$greater(params.scala:85)
at org.apache.spark.ml.param.Param.w(params.scala:82)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:745)
を取得します。別の形式または回避策がありますか?どんな助けもありがとう。
私はrf.featureSubsetStrategy、['auto'、 'onethird']と置き換えましたが、同じエラーが発生しました。 その後、ParamGridBuilderからrf.featureSubsetStrategy、['auto'、 'onethird']を削除して、同じエラーが再び発生しました。 – mikeL
@mikeLあなたのコードには 'ParamGrid'には関係しない他の問題がありますが、この特定の問題を修正しても同じエラーは発生しません。 – zero323
はい、それは違うエラーですし、はい他の問題があります。データフレームのフィーチャとラベルが間違った位置にあるように見えます。 – mikeL