ケラスの公式バイナリ分類例(hereを参照)で開始した後、Tensorflowをバックエンドとして実装しています。 この例では、2つのクラス(dog/cat)があります。今では50個のクラスがあり、データは同じ方法でフォルダに格納されています。Keras:CNNマルチクラスクラシファイア
トレーニングすると、ロスは減りませんし、精度も上がらないでしょう。 機能を使用した最後のレイヤーをに変更し、binary_crossentropy
をcategorical_crossentropy
に変更し、class_mode
をcategorical
に変更しました。ここで
は私のコードです:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
import keras.optimizers
optimizer = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
# dimensions of our images.
img_width, img_height = 224, 224
train_data_dir = 'images/train'
validation_data_dir = 'images/val'
nb_train_samples = 209222
nb_validation_samples = 40000
epochs = 50
batch_size = 16
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(50))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
train_datagen = ImageDataGenerator()
train_generator = train_datagen.flow_from_directory(
directory=train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
validation_generator = train_datagen.flow_from_directory(
directory=validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
model.save_weights('weights.h5')
私は間違っているかもしれない場所に任意のアイデア? 入力があれば幸いです!
EDIT: @RobertValenciaで尋ねたとして、ここでは最新のトレーニングログの始まりです:
Using TensorFlow backend.
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.7.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.7.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.7.5 locally
Found 3517 images belonging to 50 classes.
<keras.preprocessing.image.DirectoryIterator object at 0x7fd1d4515c10>
Found 2451 images belonging to 50 classes.
Epoch 1/50
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:910] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: GRID K520
major: 3 minor: 0 memoryClockRate (GHz) 0.797
pciBusID 0000:00:03.0
Total memory: 3.94GiB
Free memory: 3.91GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GRID K520, pci bus id: 0000:00:03.0)
8098/13076 [=================>............] - ETA: 564s - loss: 15.6869 - categorical_accuracy: 0.0267
あなたのオプティマイザの設定で何までですか?なぜそのような小さな勢いと、なぜネステロブの勢いを無効にするのでしょうか? – nemo
@nemoありがとう、ここで間違った最適化をコピーしました。ちょうど編集されました。しかし、私はこの問題を 'optimizer = SGD(lr = 0.01、decay = 1e-6、momentum = 0.9、nesterov = True)'(ポストで編集されている)としています。 –
あなたはそれぞれのクラス?トレーニングジェネレータで生成された(x、y)ペアが正しいことを確認します(列車ジェネレータで 'next() 'を呼び出して結果を確認してください)。 – nemo