これまでのところすべてが機能しています。私が持っている唯一の問題は、モデルが評価モードのときに入力と出力の画像を要約として保存することです。列車モードで作成したすべての画像サマリーが保存され、Tensorboardに正しく表示されます。ここで
は私のコードです:
def model_fn_autoencoder(features, labels, mode, params):
is_training = mode == ModeKeys.TRAIN
# Define model's architecture
logits = architecture_autoencoder(features, is_training=is_training)
# Loss, training and eval operations are not needed during inference.
loss = None
train_op = None
#eval_metric_ops = {}
if mode != ModeKeys.INFER:
loss = tf.reduce_mean(tf.square(logits - features))
train_op = get_train_op_fn(loss, params)
#eval_metric_ops = get_eval_metric_ops(labels, predictions)
if mode == ModeKeys.TRAIN:
for i in range(10):
tf.summary.image("Input/Train/" + str(i), tf.reshape(features[i],[1, 150, 150, 3]))
tf.summary.image("Output/Train/" + str(i), tf.reshape(logits[i],[1, 150, 150, 3]))
if mode == ModeKeys.EVAL:
for i in range(10):
tf.summary.image("Input/Eval/" + str(i), tf.reshape(features[i], [1, 150, 150, 3]))
tf.summary.image("Output/Eval/" + str(i), tf.reshape(logits[i], [1, 150, 150, 3]))
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=logits,
loss=loss,
train_op=train_op,
#eval_metric_ops=eval_metric_ops
たぶん誰かが私が間違ってやっているものを私に伝えることができますか?
見積もり:
def get_estimator(run_config, params):
return tf.estimator.Estimator(
model_fn=model_fn_autoencoder, # First-class function
params=params, # HParams
config=run_config # RunConfig
)
実験:
def experiment_fn(run_config, params):
run_config = run_config.replace(save_checkpoints_steps=params.min_eval_frequency)
estimator = get_estimator(run_config, params)
tf_path = 'path/to/tfrecord'
train_file = 'Crops-Faces-Negtives-150-150.tfrecord'
val_file = 'Crops-Faces-Negtives-150-150-TEST.tfrecord'
tfrecords_train = [os.path.join(tf_path, train_file)]
tfrecords_test = [os.path.join(tf_path, val_file)]
# Setup data loaders
train_input_fn = get_train_inputs(batch_size=128, tfrecord_files=tfrecords_train)
eval_input_fn = get_train_inputs(batch_size=128, tfrecord_files=tfrecords_test)
# Define the experiment
experiment = tf.contrib.learn.Experiment(
estimator=estimator, # Estimator
train_input_fn=train_input_fn, # First-class function
eval_input_fn=eval_input_fn, # First-class function
train_steps=params.train_steps, # Minibatch steps
min_eval_frequency=params.min_eval_frequency, # Eval frequency
eval_steps=10 # Number of eval batches
)
return experiment
あなたは推定器を呼び出す方法を含めるようにコードを更新してもらえますか? – Mingxing
申し訳ありませんが、見積もりとテスト作成のコードを追加しました。 –
TFチームはEstimatorSpecコンストラクタで 'training_hooks'を使ってトレーニングモードと同じように、評価モードでサマリを保存する方法を追加しています。 githubの問題はこちら:https://github.com/tensorflow/tensorflow/issues/14042 –