私はあなたが必要だと思う:
np.random.seed(6)
N = 15
master_lso = pd.DataFrame({'lsoa11': np.random.randint(4, size=N),
'TOTAL_FLOOR_AREA': np.random.choice([0,30,40,50], size=N)})
master_lso['lsoa11'] = 'a' + master_lso['lsoa11'].astype(str)
print (master_lso)
TOTAL_FLOOR_AREA lsoa11
0 40 a2
1 50 a1
2 30 a3
3 0 a0
4 40 a2
5 0 a1
6 30 a3
7 0 a2
8 40 a0
9 0 a2
10 0 a1
11 50 a1
12 50 a3
13 40 a1
14 30 a1
条件により、まず、フィルタ行boolean indexing
で - それは以下の行ので、グループ化の前に高速です。
df = master_lso[master_lso['TOTAL_FLOOR_AREA'] > 30]
print (df)
TOTAL_FLOOR_AREA lsoa11
0 40 a2
1 50 a1
4 40 a2
8 40 a0
11 50 a1
12 50 a3
13 40 a1
その後groupby
と集計size
:
df1 = df.groupby('lsoa11')['TOTAL_FLOOR_AREA'].size().reset_index(name='Count')
print (df1)
lsoa11 Count
0 a0 1
1 a1 3
2 a2 2
3 a3 1
なし盗むが、借入ごとの総面積を合計することができますということです。) – jezrael
私はあなたに戻ってそれを与える方法がわからない;) – Quickbeam2k1
屋、それは違いで、知っておきたいこと:D – jezrael