私はCNNニューラルネットワークのpythonで800サンプルをテストし、それを60でテストしました。 はを予測します。同じ結果です。ケラスCNN同じ出力
#main file - run this to train the network
import numpy as np
from keras.datasets import cifar10
from datasetFetch import DataFetch
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.constraints import maxnorm
from keras.optimizers import SGD
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
K.set_image_dim_ordering('th')
import simplejson
from matplotlib import pyplot
from scipy.misc import toimage
# load data
#(X_train, y_train), (X_test, y_test) = cifar10.load_data()
# create a grid of 3x3 images
#for i in range(0, 9):
# pyplot.subplot(3,3,1 + i)
# pyplot.imshow(toimage(X_train[i]))
# show the plot
#pyplot.show()
#init data
CONST_PHOTOS = 400 # number of photos of each type
y_train = []
#train data
data = DataFetch('orange',CONST_PHOTOS)
data1 = data.openPictures()
data = DataFetch('apple', CONST_PHOTOS)
data.removeErrorImages()
data2 = data.openPictures()
#test data
tdata = DataFetch('test-orange',30)
tdata1 = tdata.openPictures()
tdata = DataFetch('test-apple',30)
tdata2 = tdata.openPictures()
#add togheter data
X_train = data.connectData(data1,data2,'train')
y_train = data.getYtrain('train')
X_test = tdata.connectData(tdata1,tdata2,'test')
y_test = tdata.getYtrain('test')
# fix random seed for reproducibility
seed = 7
np.random.seed(seed)
# normalize inputs from 0-255 to 0.0-1.0
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train = X_train/255.0
X_test = X_test/255.0
#one hot encode outputs
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_train.shape[1] #number of categories
# Create the model
model = Sequential()
model.add(Conv2D(224, (11, 11), input_shape=(224, 224, 3), activation='relu', padding='same'))
model.add(Dropout(0.2))
model.add(Conv2D(55, (5, 5), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), data_format="channels_last"))
model.add(Conv2D(13, (3, 3), activation='relu', padding='same'))
model.add(Dropout(0.5))
model.add(Conv2D(13, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), data_format="channels_last"))
model.add(Flatten())
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu', kernel_constraint=maxnorm(3)))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
# Compile model
epochs = 100
lrate = 0.01
decay = lrate/epochs
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)
model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
#print(model.summary())
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=epochs, batch_size=10)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
#and then we save
# serialize model to JSON
model_json = model.to_json()
with open("Data/model.json", "w") as json_file:
json_file.write(simplejson.dumps(simplejson.loads(model_json), indent=4))
# serialize weights to HDF5
model.save_weights("Data/model.h5")
print("Saved model to disk")
私は tensorflow kerasとを使用。画像は224x224ピクセルで、それぞれ2つのカテゴリに分かれています。私はニューラルネットワークについてはあまりよく分かりませんが、これは私の最初の試みです。私はそれ以上のフィットかもしれない、または多分私は1つのより重要な層、または多分私のバッチサイズ/エポック/レートを学ぶ間違っている必要があります聞いた。
助けてください!
Edit1:シードはどのようにネットワークのトレーニングに影響しますか? トレーニング後、精度は正確に50%で、モデルをロードして予測機能を使用する別の.pyファイルを使用することにより、使用する画像の正確な出力割合が返されます。私は訓練用と外部用の両方の画像を試しました。 私はdataFetchコードを追加しました。
#preparing the photos to be 224x224 and getting them from urls saved in txt files
from PIL import Image
import requests
from io import BytesIO
import numpy as np
import socket
import random
from scipy import misc
from PIL import ImageChops
import math, operator
from functools import reduce
import glob
import os
import signal
compare = Image.open('/home/mihai/PycharmProjects/neuralnet/compare.jpg')
compare1 = Image.open('/home/mihai/PycharmProjects/neuralnet/compare1.jpg')
compare2 = Image.open('/home/mihai/PycharmProjects/neuralnet/compare2.jpg')
compare3 = Image.open('/home/mihai/PycharmProjects/neuralnet/compare3.jpg')
compare4 = Image.open('/home/mihai/PycharmProjects/neuralnet/compare4.jpg')
def rmsdiff(im1, im2):
"Calculate the root-mean-square difference between two images"
h = ImageChops.difference(im1, im2).histogram()
# calculate rms
return math.sqrt(reduce(operator.add, map(lambda h, i: h*(i**2), h, range(256)))/(float(im1.size[0]) * im1.size[1]))
class DataFetch:
chosenFile = ''
maxNumber = 0
y_train = []
y_test = []
def __init__(self, choice, number):
print('Images with '+choice+'s are being prepared')
self.chosenFile = choice
self.maxNumber = number
def getPictures(self):
imgArr = np.zeros((self.maxNumber, 224, 224, 3), dtype='uint8')
count = 0
class timeoutError(Exception):
signal.alarm(0)
def handler(signum, frame):
raise timeoutError
with open(self.chosenFile, "r") as ins:
for line in ins:
if count < self.maxNumber:
signal.signal(signal.SIGALRM, handler)
signal.alarm(3)
try:
try:
r = requests.get(line)
try:
img = Image.open(BytesIO(r.content))
ok = 0
try:
if rmsdiff(compare, img) > 1.3 and rmsdiff(compare1, img) > 1.3 and rmsdiff(compare2, img) > 1.3 and rmsdiff(compare3, img) > 1.3 and rmsdiff(compare4, img) > 1.3:
ok = 1
else:
print('Image removed from website')
except ValueError:
ok = 1
if ok == 1:
img = img.resize((224, 224))
img = img.convert('RGB')
img.save('/home/mihai/PycharmProjects/neuralnet/images/'+self.chosenFile+'/'+str(count)+".jpg", 'JPEG')
imgArr[count, :, :, :] = img
count = count + 1
print(count)
except OSError:
print('Image not Available')
except socket.error:
print('URL not available')
except timeoutError:
print("URL not available")
return imgArr
def openPictures(self):
cdir = os.getcwd()
imgArr = np.zeros((self.maxNumber, 224, 224, 3), dtype='uint8')
count = 0
for filename in glob.glob(cdir+'/images/'+self.chosenFile+'/*.jpg'):
if count < self.maxNumber:
img = Image.open(filename)
imgArr[count, :, :, :] = img
count = count + 1
return imgArr
def removeErrorImages(self):
cdir = os.getcwd()
for filename in glob.glob(cdir+'/images/'+self.chosenFile+'/*.jpg'):
img = Image.open(filename)
try:
if rmsdiff(compare, img) < 1.3 or rmsdiff(compare1, img) < 1.3 or rmsdiff(compare2, img) < 1.3 or rmsdiff(compare3, img) < 1.3 or rmsdiff(compare4, img) < 1.3:
os.remove(cdir+'/images/'+self.chosenFile+'/'+filename+'.jpg')
except ValueError:
pass
def getYtrain(self,outParam):
if outParam == 'train':
self.y_train = np.reshape(self.y_train, (len(self.y_train), 1))
return self.y_train
else:
self.y_test = np.reshape(self.y_test, (len(self.y_test), 1))
return self.y_test
def connectData(self, data1, data2, outParam):
d1c = 0
d2c = 0
outList = []
X_train = np.zeros((2 * self.maxNumber, 224, 224, 3), dtype='uint8')
for i in range(2 * self.maxNumber):
if d1c < self.maxNumber and d2c <self.maxNumber:
if random.random() <= 0.5:
X_train[d1c + d2c, :, :, :] = data1[d1c, :, :, :]
d1c = d1c + 1
outList.append(0)
else:
X_train[d1c + d2c, :, :, :] = data2[d2c, :, :, :]
d2c = d2c + 1
outList.append(1)
else:
if d1c < self.maxNumber:
X_train[d1c + d2c, :, :, :] = data1[d1c, :, :, :]
d1c = d1c + 1
outList.append(0)
else:
if d2c < self.maxNumber:
X_train[d1c + d2c, :, :, :] = data2[d2c, :, :, :]
d2c = d2c + 1
outList.append(1)
if outParam == 'train':
self.y_train = outList
else:
if outParam == 'test':
self.y_test = outList
return X_train
予測するためのコード:
#run this to test a sample
from keras.utils import np_utils
from keras.models import model_from_json
from keras.optimizers import SGD
from datasetFetch import DataFetch
# load json and create model
json_file = open('Data/model2.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("Data/model2.h5")
print("Loaded model from disk")
epochs = 100
lrate = 0.01
decay = lrate/epochs
sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False)
loaded_model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
#prepare X_test
tdata = DataFetch('test-orange',int(3))
tdata1 = tdata.openPictures()
tdata = DataFetch('test-apple',int(3))
tdata2 = tdata.openPictures()
X_test = tdata.connectData(tdata1,tdata2,'test')
y_test = tdata.getYtrain('test')
X_test = X_test.astype('float32')
X_test = X_test/255.0
y_test = np_utils.to_categorical(y_test)
print('Number of samples to be tested: '+str(X_test.shape[0]))
scores = loaded_model.evaluate(X_test, y_test, verbose=0)
print(scores[1]*100)
score = loaded_model.predict(X_test,batch_size=6, verbose=1)
print(score) #prints percentages
固定ランダムシードを設定しているため正確さは同じです –
「同じ結果をもたらす」とはどういう意味ですか?それは、あなたがそれに渡す入力と同じ予測をするか、同じ入力を渡すと常に50%の精度を得ますか? – gionni
ああ、申し訳ありませんが、同じスクリプトでmodel.predictを使用したと思います。トレーニングフェーズでモデルの精度/損失はどのくらいですか?モデル予測を使用する前にデータとモデルを再ロードする方法は? –